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ABSTRACT. Mathematics books and journals do not look as beautiful as they 
used to. It is not that their mathematical content is unsatisfactory, rather 
that the old and well-developed traditions of typesetting have become too 
expensive. Fortunately, it now appears that mathematics itself can be used 
to solve this problem. 

A first step in the solution is to devise a method for unambiguously 
specifying mathematical manuscripts in such a way that they can easily be 
manipulated by machines. Such languages, when properly designed, can be 
learned quickly by authors and their typists, yet manuscripts in this form 
will lead directly to high quality plates for the printer with little or no 
human intervention. 

A second step in the solution makes use of classical mathematics to 
design the shapes of the letters and symbols themselves. It is possible to give 
a rigorous definition of the exact shape of the letter "a", for example, in such 
a way that infinitely many styles (bold, extended, sans-serif, italic, etc.) are 
obtained from a single definition by changing only a few parameters. When 
the same is done for the other letters and symbols, we obtain a mathemati­
cal definition of type fonts, a definition that can be used on all machines 
both now and in the future. The main significance of this approach is that 
new symbols can readily be added in such a way that they are automatically 
consistent with the old ones. 

Of course it is necessary that the mathematically-defined letters be beauti­
ful according to traditional notions of aesthetics. Given a sequence of points 
in the plane, what is the most pleasing curve that connects them? This 
question leads to interesting mathematics, and one solution based on a novel 
family of spline curves has produced excellent fonts of type in the author's 
preliminary experiments. We may conclude that a mathematical approach 
to the design of alphabets does not eliminate the artists who have been 
doing the job for so many years; on the contrary, it gives them an exciting 
new medium to work with. 

I will be speaking today about work in progress, instead of completed 
research; this was not my original intention when I chose the subject of this 
lecture, but the fact is I couldn't get my computer programs working in time. 
Fortunately it is just as well that I don't have a finished product to describe to 
you today, because research in mathematics is generally much more interest­
ing while you're doing it than after it's all done. I will try therefore to convey 
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in this lecture why I am so excited about the project on which I am currently 
working. 

My talk will be in two parts, based on two different meanings of its title. 
First I will speak about mathematical typography in the sense of typography 
as the servant of mathematics: the goal here is to communicate mathematics 
effectively by making it possible to publish mathematical papers and books of 
high quality, without excessive cost. Then I will speak about mathematical 
typography in the sense of mathematics as the servant of typography: in this 
case we will see that mathematical ideas can make advances in the art of 
printing. 

Preliminary examples. To set the stage for this discussion I would like to 
show you some examples by which you can "educate your eyes" to see 
mathematics as a printer might see it. These examples are taken from the 
Transactions of the American Mathematical Society, which began publication 
in 1900; by now over 230 volumes have been published. I took these volumes 
from the library shelves and divided them into equivalence classes based on 
what I could perceive to be different styles of printing: two volumes were 
placed into the same class if and only if they appeared to be printed in the 
same style. It turns out that twelve different styles can be distinguished, and it 
will be helpful for us to look at them briefly. 

The first example (Figure la) comes from p. 2 of Transactions volume 1; I 
have shown only a small part of the page in order to encourage you to look at 
the individual letters and their positions rather than to read the mathematics. 
This typeface has an old-fashioned appearance, primarily because the upper 
case letters and the taller lower case ones like 'A* and 'k9 are nearly twice as 
tall as the other lower case letters, and this is rarely seen nowadays. Notice 
the style of the italic letter 'x\ the two strokes having a common segment in 
the middle. The subscripts and superscripts are set in rather small type. 

This style was used in volumes 1 to 12 of the Transactions, and also in the 
first 21 pages of volume 13. Then page 22 of volume 13 introduced a more 
modern typeface (Figure lb). In this example the subscripts are still in a very 
small font, and unfortunately the Greek a here is almost indistinguishable 
from an italic V . Notice also that the printer has inserted more space before 
and after parentheses than we are now accustomed to. During the next few 
years the spacing within formulas evolved gradually but the typefaces re­
mained essentially the same up through volume 24: with one exception. 

The exception was volume 23 in 1922 (Figure lc), which in my opinion has 
the most pleasing appearance of all the Transactions volumes. This modern 
typeface is less condensed, making it more pleasant to read. The italic letters 
have changed in style too, not quite so happily—note the 'x\ for example, 
which is not as nice as before—but by and large one has a favorable 
impression when paging through this volume. Such quality was not without 
its cost, however; according to a contemporary report in the AMS Bulletin 
[45, p. 100], the Transactions came out 18 months late at the time! Perhaps 
this is why the Society decided to seek yet another printer. 

In order to appreciate the next change, let's look quickly at two excerpts 
from the Bulletin relating to the very first Gibbs lecture (Figure 2). The 
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THE JOSIAH WILLARD GIBBS LECTURESHIP 

The Council of the Society has sanctioned the establishment 
of an honorary lectureship to be known as the Josiah Willard 
Gibbs Lectureship. The lectures are to be of a popular nature 
on topics in mathematics or its applications, and are to be 
given by invitation under the auspices of the Society. They 
will be held annually or at such intervals as the Council may 
direct. It is expected that the first lecture will be delivered 
in New York City during the winter of 1923-24, and a com­
mittee has been authorized to inaugurate the lectures by 
choosing the first speaker and making the necessary arrange­
ments. 

R. G. D. RICHARDSON, 

Secretary. 

THE FIRST JOSIAH WILLARD GIBBS LECTURE 

The first Josiah Willard Gibbs Lecture was delivered 
under the auspices of this Society on February 29. 1924, 
by Professor M. I. Pupin, of Columbia University, in the 
auditorium of the Engineering Societies' Building, New York 
City. A large and distinguished audience was present, 
including, besides members of the Society, many physicists, 
chemists, and engineers who had been invited to attend. 

In introducing the speaker, President Veblen spoke as 
follows: 

"In instituting the Willard Gibbs Lectures, the American 
Mathematical Society has recognized the dual character of 
mathematics. On the one hand, mathematics is one of the 
essential emanations of the human spirit,—a thing to be 
valued in and for itself, like art or poetry. Gibbs made 

FIGURE 2. A time of transition. 
(Excerpts from the AMS Bulletin 29 (1923), p. 385; 30 (1924), p. 289. ) 
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preliminary announcement in 1923 appeared in the modern typeface used 
during that year, but the letter shapes in the report of the first lecture in 1924 
were very cramped and stilted. The upper case letters in the title are about the 
same, but the lower case letters in the text are completely different. 

This same style appeared in volume 25 of the Transactions (Figure Id), 
which incidentally was set in Germany in order to reduce the cost of printing. 
Note that the boldface letters and the italic letters in this example are actually 
quite beautiful—and we're back to the good old style of V again—so the 
mathematical formulas looked great while the accompanying text was crowd­
ed. Fortunately only three volumes were published in this style. 

A new era for the Transactions began in 1926, when its printing was taken 
over by the Collegiate Press in Menasha, Wisconsin. Volumes 28 through 104 
were all done in the same style, covering 36 years from 1926 to 1961, 
inclusive, and this style (Figure le) was used also in the American Mathe­
matical Monthly. In general the modern typefaces were quite satisfactory, but 
there was also a curious anomaly: Italic letters used in subscripts and 
superscripts of mathematical formulas were in a different style from those 
used on the main line! For example, notice the two fc's in the first displayed 
formula of Figure le: the larger one has a loop, so it is topologically different 
from the smaller one. Similarly you can see that the/? in kp is quite different 
from the p in p2. There are no JC'S in this example, but if you look at other 
pages you will find that the style of x that I like best appears only in 
subscripts and superscripts. I can't understand why this discrepancy was 
allowed to persist for so many years. 

Another period of typographic turmoil for the Transactions began with 
volume 105 in 1962. This volume, which was typeset in Israel, introduced a 
switch to the Times Roman typeface (Figure If); an easy way to recognize the 
difference quickly is to look at the shading on the letter "o", since it now is 
somewhat slanted; in the previously used fonts this letter always was more 
symmetrical, as if it were drawn with a pen held horizontally, but in Times 
Roman it clearly has an oblique stress as if it were drawn by a right-handed 
penman. Note that the three &'s are topologically the same in the displayed 
equation here; but for some reason the two subscript A:'s are of different sizes. 
Many of the Times Italic letters have a somewhat different style than readers 
of the Transactions had been accustomed to, and I personally think that this 
font tends to make formulas look more crowded. Actually the changeover to 
Times Roman and Times Italic wasn't complete; the italic letter g still had its 
familiar shape, perhaps because the new shape looked too strange to 
mathematicians. 

Volumes 105 through 124 were all done in this style, except for a brief 
interruption: In volumes 114, 115, and 116 the shading on the Ö'S was 
symmetrical and the &'s had loops (Figure lg). Another style was used for 
volumes 125-168 (Figure lh): again Times Roman was the rule, even in the 
g's, except for subscripts and superscripts which were in the style I prefer; for 
example, compare the ƒ s and &'s. (These latter volumes were typeset in Great 
Britain.) 

A greatly increased volume of publication, together with the rising salaries 
of skilled personnel, was making it prohibitively expensive to use traditional 
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methods of typesetting, and the Society eventually had to resort to a fancy 
form of typewriter composition that could simply be photographed for 
printing. This unfortunate circumstance made volumes 169-198 of the 
Transactions look like Figure li, except for volumes 179, 185, 189, 192, 194, 
and 198, which were done in a far better (yet not wholly satisfactory) style 
that can be distinguished from Figure If by the italic g's. Figure lj was 
composed on a computer using a system developed by Lowell Hawkinson 
and Richard McQuillin; this was one of the fruits of an AMS research project 
supported by the National Science Foundation [2], [3], [4], [5], [6]. 

Computer typesetting of mathematics was still somewhat premature at the 
time, however, and another kind of "cold copy" made its appearance in 
volumes 199 through 224—an "IBM Compositor" was used, except for 
volumes 208 and 211 which reverted to the Varityper style of Figure li. The 
new alphabet was rather cramped in appearance, and some words were even 
more crowded than the others (see Figure Ik). At this point I regretfully 
stopped submitting papers to the American Mathematical Society, since the 
finished product was just too painful for me to look at. Similar fluctuations of 
typographical quality have appeared recently in all technical fields, especially 
in physics where the situation has gotten even worse. (The history of publi­
cation at the American Society of Civil Engineers has been discussed in an 
interesting and informative article by Paul A. Parisi [44].) 

Fortunately things are now improving. Beginning with volume 225, which 
was published last year, the Transactions now looks like Figure 11; like Figure 
lj, it is computer composed, and the Times Roman typeface is now somewhat 
larger. I still don't care for this particular style of italic letters, and there are 
some bugs needing to be ironed out such as the overlap between lines shown 
in this example; but it is clear that the situation is getting better, and perhaps 
some day we will once again be able to approach the quality of volumes 23 
and 24. 

Computer-assisted composition. Perhaps the main reason that the situation 
is improving is the fact that computers are able to manipulate text and 
convert it into a form suitable for printing. Experimental systems of this kind 
have been in use since the early 1960s (cf. the book by Barnett [10]), and now 
they are beginning to come of age. Within another ten years or so, I expect 
that the typical office typewriter will be replaced by a television screen 
attached to a keyboard and to a small computer. It will be easy to make 
changes to a manuscript, to replace all occurrences of one phrase by another 
and so on, and to transmit the manuscript either to the television screen, or to 
a printing device, or to another computer. Such systems are already in use by 
most newspapers, and new experimental systems for business offices actually 
will display the text in a variety of fonts [26]. It won't be long before these 
machines change the traditional methods of manuscript preparation in 
universities and technical laboratories. 

Mathematical typesetting adds an extra level of complication, of course. 
Printers refer to mathematics as "penalty copy", and one of America's 
foremost typographers T. L. De Vinne wrote that "[even] under the most 
favorable conditions algebra will be troublesome." [17, p. 171.] The problem 
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Type C Type B Type T 

$fl$s2$t 1 over 2 1 \over 2 

*gqH2 theta sup 2 \thetaT2 

$rf(x'i)$t sqrt{f(x sub i )} \sqrt{f(x4â)} 

FIGURE 3. Three ways to describe a formula. 

used to be that the two-dimensional formulas required complicated position­
ing of individual metal pieces of type; but now this problem reduces to a 
much simpler one, namely that two-dimensional formulas need to be repre­
sented as a one-dimensional sequence of instructions for transmission to the 
computer. 

One-dimensional languages for mathematical formulas are now familiar in 
programming languages such as FORTRAN, but a somewhat different ap­
proach is needed when all of the complexities of typesetting are considered. 
In order to show you the flavor of languages for mathematical typesetting, I 
will briefly describe the three reasonably successful systems known to me. 
The first, which I will call Type C, is typical of the commercially available 
systems now used to typeset mathematical journals (cf. [12]). The second, 
which I will call Type B, was developed at Bell Telephone Laboratories and 
has been used to prepare several books and articles including the article that 
introduced the system [27]. The third, which I will call Type T, is the one I 
am presently developing as part of the system I call TEX [29].l 

Figure 3 shows how three simple formulas would be expressed in these 
three languages. The Type C language uses $f . . . $s . . . $t for fractions, *g 
for "the next character is Greek", q for the Greek letter theta, " for 
superscripts, $ r . . . $t for square roots and ' for subscripts. The Type B 
language is more mnemonic, using "over", "theta", "sup", "sqrt", and "sub" 
together with braces for grouping when necessary. The Type T language is 
similar but it does not make use of "reserved words"; a special character \ is 
used before any nonstandard text. This means that spaces can be ignored, 
while they need to be inserted in just the right places in the Type B language; 
for example, the space after the "/" is important in the example shown, 
otherwise ƒ (X) would become ƒ (xt) according to the Type B rules. Another 
reason for the \ delimiter in Type T is that it becomes unnecessary to match 
each text item against a stored dictionary, and it is possible to use "sup" to 
mean supremum instead of superscript. The special symbols \ { } f | in Type 
T can be changed to any other characters if desired; although these five 

'This has no connection with a similarly-named system recently announced by Honeywell 
Information Systems, or with another one developed by Digital Research. In my language, the 
T, E, and X are Greek letters and TEX is pronounced "tech", following the Greek words for art 
and technology. 

Formula 

file:///over
file:///thetaT2
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symbols don't appear on conventional typewriters, they are common on 
computer terminal keyboards. 

Incidentally, computer typesetting brings us some good news: It is now 
quite easy to represent square roots in the traditional manner with radical 
signs and vincula, so we won't have to write x1 /2 when we don't want to.2 

None of these languages makes it possible to read complex formulas as 
easily as in the two-dimensional form, but experience shows that it is not 
difficult for untrained personnel to learn how to type them. According to [12], 
"Within a few hours (a few days at most) a typist with no math or typesetting 
background can be taught to input even the most complex equations." And 
the Type B authors [27] report that "the learning time is short. A few minutes 
gives the general flavor, and typing a page or two of a paper generally 
uncovers most of the misconceptions about how it works." Thus it will be 
feasible for both typists and mathematicians to prepare papers in such a 
language, without investing a great deal of effort in learning the system. The 
only real difficulties arise when preparing tables that involve tricky align­
ments. 

Once such systems become widespread, authors will be able to prepare 
their papers and see exactly how they will look when printed. Everyone who 
writes mathematical papers knows that his intentions are often misunderstood 
by the printer, and corrections to the galley proofs have a nontrivial probabil­
ity of introducing further errors. Thus, in the words of three early users of the 
Bell Labs' system, "the moral seems clear. If you let others do your typeset­
ting, then there will be errors beyond your control; if you do your own, then 
you have only yourself to blame." [1] Personally, I can't adequately describe 
how wonderful it feels when I now make a change to the manuscript of my 
book, as it is stored in the Stanford computer, since I know that the change is 
immediately in effect; it never will go through any middlemen who might 
misunderstand my intention. 

Perhaps some day a typesetting language will become standardized to the 
point where papers can be submitted to the American Mathematical Society 
from computer to computer via telephone lines. Galley proofs will not be 
necessary, but referees and/or copy editors could send suggested changes to 
the author, and he could insert these into the manuscript, again via telephone. 

Of course I am hoping that if any language becomes standard it will be my 
TEX language. Wel l . . . perhaps I am biased, and I know that TEX provides 
only small refinements over what is available in other systems. Yet several 
dozen small refinements add up to something that is important to me, and I 
think such refinements might prove important to other people as well. 
Therefore I'd like to spend the next few minutes explaining more about TEX. 

The TEX input language. TEX must deal with "ordinary" text as well as 
mathematics, and it is designed as a unified system in which the mathematical 
features blend in with the word-processing routines instead of being "tacked 
on" to a conventional typesetting language. The main idea of TEX is to 

2(ADDED IN PROOF). I was pleased to find that this announcement was greeted with an 
enthusiastic round of applause when I delivered the lecture. 
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construct what I call boxes. A character of type by itself is a box, as is a solid 
black rectangle; and we use such "atoms" to construct more complex boxes 
analogous to "molecules", by forming horizontal or vertical lists of boxes. 
The final pages of text are boxes made out of lists of boxes made out of lists 
of boxes, and so on down to the individual characters and black rectangles, 
which are not decomposed further. For example, a typical page of a book is a 
box formed from vertical lists of boxes representing lines of type, and these 
lines of type are boxes formed from a horizontal list of boxes representing 
individual letters. A mathematical formula breaks down into boxes in a 
natural way; for example, the numerator and denominator of a fraction are 
boxes, and so is the bar line between them (since it is a thin but solid black 
rectangle). The elements of a rectangular matrix are boxes, and so on. 

The individual boxes of a horizontal list or a vertical list are separated by a 
special kind of elastic mortar which I call "glue". The glue between two boxes 
has three component parts (x,y9 z) expressed in units of length: 

the space component, x9 is the ideal or normal space desired between 
these boxes; 

the stretch component, y9 is the amount of extra space that is 
tolerable; 

the shrink component, z, is the amount of space that may be removed 
if necessary. 

Suppose the list contains n + 1 boxes B09 Bl9 . . . , Bn separated by n globs of 
glue having specifications (xl9yl9 zx)9 . . . , (xn9yn9 zn). When this list is made 
into a box, we set the glue according to the desired final size of the box. If the 
final size is to be larger than we would obtain with the normal spacing 
x{ + • • • + xn, we increase the space proportional to the y9s so that the 
actual space between boxes is 

xx + tyX9...9xn + tyn 

for some appropriate / > 0. On the other hand if the desired final size 
must be smaller, we decrease the space to 

X\ *Zj, • • • , Xn *ZW, 

in proportion to the individual shrinkages z,. In the latter case t is not allowed 
to become greater than 1; the glue will never be smaller than x — z, although 
it might occasionally become greater than x + y. Once the glue has been set, 
the box is rigid and never changes its size again. 

Consider, for example, a normal line of text, which is a list of individual 
character boxes. The glue between letters of a word will have x = y = z = 0, 
say, meaning that this word always has the letters butting against each other; 
but the glue between words might have x equal to the width of the letter V, 
and>> = x9 and z = \x9 meaning that the space between words might expand 
or shrink. The spaces after punctuation marks like periods and commas might 
be allowed to stretch at a faster rate but to shrink more slowly. 

An important special case of this glue concept occurs when we have 
"infinite" stretchability. Suppose the x and z components are zero, but the y 
component is extremely large, say y is one mile long. If such an element of 
glue is placed at the left of a list of boxes, the effect will be to put essentially 
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all of the expansion at the left, therefore the boxes will be right-justified so 
that the right edge will be flush with the margin. Similarly if we place such 
infinitely stretchable glue at both ends of the list, the effect will be to center 
the line. These common typographic operations therefore turn out to be 
simple special cases of the general idea of variable glue, and the computer can 
do its job more elegantly since it is dealing with fewer primitives. Incidentally 
you will notice from this example that glue is allowed to appear at the ends of 
a list, not just between boxes; actually it is also possible to have glue next to 
glue, and boxes next to boxes, so that a list of boxes really is a list of boxes 
and glue mixed in any fashion whatever. I didn't mention this before, because 
for some reason it seems easier to explain the idea first in the case when boxes 
alternate with glue. 

The same principles apply to vertical lists. For example, the glue which 
appears above and below a displayed equation will tend to be stretchable and 
shrinkable, but the glue between lines of text will be calculated so that 
adjacent base lines will be uniformly spaced when possible. You can imagine 
how the concept of glue allows you to do special tricks like backspacing (by 
letting x be negative), in a natural manner. 

Line division. One of the more interesting things a system like TEX has to 
do is to divide up a paragraph into individual lines so that each line is about 
the right length. The traditional way to do this, which is still used on today's 
computer typesetting systems, is to make the best possible line division you 
can whenever you come to the right margin, but once this line has been 
output you never reconsider it—you start the next line with no memory of 
what has come before. Actually it often happens that one could do better by 
moving a short word down from one line to the next, but the problem is that 
you don't know what the rest of the paragraph will be like when you have 
only looked at one line's worth. 

The TEX system will introduce a new approach to the problem of line 
division, in which the end of a paragraph does influence the way the first lines 
are broken; this will result in more even spacing and fewer hyphenated 
words. Here is how it works: First we convert the line division problem to a 
precisely-defined mathematical problem by using TEX's glue to introduce the 
concept of "badness". When a horizontal list of boxes has a certain natural 
width w (based on the width of its boxes and the space components of its 
glue), a certain stretchability y (the sum of the stretch components) and a 
certain shrinkability z (the sum of the shrinkages), the badness of setting the 
glue to make a box of width W is defined to be 1 + 100*3 in our previous 
notation; more precisely, it is 

1, if W - w9 

l + lOolW"w\9 i!W>w, 

1 + l00lW"z
W\\ iîw-z<W<w> 

infinite, if W < w — z. 
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Thus if the desired width W is near the natural width w, or if there is a lot of 
stretchability and shrinkability, the badness rating is very small; but if W is 
much greater than w and there isn't much ability to stretch, we have a lot of 
badness. Furthermore we add penalty points to the badness rating if the line 
ends at a comparatively undesirable place; for example, when a word needs 
to be hyphenated, the badness goes up by 50, and an even worse penalty is 
paid if we have to break up mathematical formulas. 

The line division problem may now be stated as follows. "Given the text of 
a paragraph and the set of all allowable places to break it between lines, find 
breakpoints which minimize the sum of the squares of the badnesses of the 
resulting lines." This definition is quite arbitrary, of course, but it seems to 
work. Preliminary experiments show that the same choice of breakpoints is 
almost always found when simply minimizing the sum of the individual 
badnesses rather than the sum of their squares, but it seems wise to minimize 
the sum of squares as a precautionary measure since this will also tend to 
minimize the maximum badness. 

Just stating the line division problem in mathematical terms doesn't solve 
it, of course; we need to have a good way to find the desired breakpoints. If 
there are n permissible places to break (including all spaces between words 
and all possible hypenations), there are 2n possible ways to divide up the 
paragraph, and we would never have time to look at them all. Fortunately 
there is a technique that can be used to reduce the number of computational 
steps to order n2 instead of 2n; this is a special case of what Richard Bellman 
calls "dynamic programming." Let ƒ (j) be the minimum sum of badness 
squares for all ways to divide the initial text of the paragraph up to 
breakpoints, including a break aty, and let b{ij) be the badness of a line 
that runs from breakpoint / to breakpoint j . Let breakpoint 0 denote the 
beginning of the paragraph; and let breakpoint n + 1 be the end of the 
paragraph, with infinitely expandable glue inserted just before this final 
breakpoint. Then 

/(0) = 0; 

SU) = omin (ƒ(/) + b{ijf), for 1 < j < n + 1. 

The computation of /(l), . . . , ƒ (« + 1) can be done in order n2 steps, and 
S(n + 1) will be the minimum possible sum of badnesses squared. By remem­
bering the values of i at which the minima occurred for each j , we can find 
breakpoints that give the best line divisions, as desired. 

In practice we need not test extremely unlikely breakpoints; for example, 
there is rarely any reason to hyphenate the very first word of a paragraph. 
Thus it turns out that this dynamic programming method can be further 
improved to an algorithm whose running time is almost always of order n 
instead of n2, and comparatively few hyphenations will need to be tried. 
Incidentally, the problem of hyphenation itself leads to some interesting 
mathematical questions, but I don't have time to discuss them today. (Cf. [41] 
and the references in that paper.) 

The idea of badness ratings applies in the vertical dimension as well as in 
the horizontal; in this case we want to avoid breaking columns or pages in a 
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bad manner. For example, penalty points are given for splitting a paragraph 
between pages after a hyphenation, or for dividing it in such a way that only 
one of its lines—a so-called "widow" line—appears on a page. The placement 
of illustrations, tables, and footnotes is also facilitated by formulating 
appropriate rules of placement in terms of badness. 

There is more to TEX, including for example some facilities for handling 
the rather intricate layouts often needed to typeset tables without having to 
calculate column widths; but I think I have described the most important 
principles of its organization. During the next few months I plan to write the 
computer programs for TEX in such a way that each algorithm is clearly 
explained and so that the system can be implemented on many different 
computers without great difficulty; then I intend to publish the programs in a 
book so that everyone who wants to can use them. 

Entr'acte. I said at the beginning that this talk would be in two parts, 
discussing both the ways that typography can help mathematics and that 
mathematics can help typography. So far we have seen a little of both, but the 
mathematics has been comparatively trivial. In the remainder of my lecture I 
would like to discuss what I believe is a much more significant application of 
mathematics to typography, namely to the specification of the letter shapes 
themselves. A more accurate way to describe the two parts of my lecture 
would be to say that the first part was about TEX, a system which takes 
manuscripts and converts them into specifications about where to put each 
character on each page; and the second part will be about another system I'm 
working on called METAFONT, which generates the characters themselves, 
for use in the inkier parts of the printing business. 

Before I get into the second part of my lecture I need to discuss recent 
developments in printing technology. The most reliable way to print mathe­
matics books of high quality during the past several decades has been to use 
the monotype process3 which casts characters in hot lead, together with hand 
operations for complex built-up formulas. When I watched this process being 
applied to my own books several years ago, I was surprised to learn that the 
lead type was used to print only one copy; this master copy was then 
photographed, and the real printing took place from the photographic plates. 
This somewhat awkward sequence of steps was justified because it was the 
best way known to give good results. During the 1960s, however, hot lead 
type was replaced for many purposes by devices like the Photon machine 
used to prepare the printed programs for this lecture; in this case the process 
is entirely photographical, since the letter shapes are stored as small negatives 
on a rotating disk, and the plates needed for printing are obtained by 
exposing the film after transforming the characters into the proper size and 
position with mirrors and lenses (cf. [10]). Such machines are limited by slow 
speed and the difficulties of adding new characters. 

"Third-generation" typesetting equipment. More recent machines, such as 
the one used to prepare the current volumes of the Transactions, have 
replaced these "analog" processes by a "digital" one. The new idea is to 

3Actually the Monotype Corporation now manufactures digital photosetting equipment as well 
as the traditional 'monotype' machines. 
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divide the page or the photographic negative into millions of tiny rectangles, 
like a piece of graph paper or like a television screen but with a much higher 
resolution of about 1000 lines per inch. For each of the tiny "pixels" in such a 
raster pattern—there are about a million square pixels in every square 
inch—the typesetting machine decides whether it is to be black or white, and 
the black ones are exposed on the photographic plate by using a very 
precisely controlled electron beam or laser beam. Since these machines have 
few moving parts and require little or no mechanical motion, they can operate 
at very high speeds even though they are exposing only a tiny bit of the film 
at any time. 

Stating this another way, the new printing equipment essentially treats each 
page of a book as a huge matrix of 0's and l's, with ink to be placed in the 
positions that are 1 while the 0 positions are to be left blank. It's like the 
flashcards at a football stadium, although on a much grander scale. The total 
job of a system like TEX now becomes one of converting an author's 
manuscript into a gigantic bit matrix. 

The first question we must ask, of course, is, "What happens to the quality?" 
Clearly a television picture is no match for a photograph, and the digital 
typesetting machines would be quite unsatisfactory if their output looked 
inferior to the results obtained with metal type. In matters like this, I have to 
confess being somewhat of a stickler and a perfectionist; for example, I refuse 
to eat margarine instead of butter, and I have never heard an electronic organ 
that sounds even remotely as beautiful as a pipe organ. Therefore I was quite 
skeptical about digital typography, until I saw an actual sample of what was 
done on a high quality machine and held it under a magnifying glass: It was 
impossible to tell that the letters were generated with a discrete raster! The 
reason for this is not that our eyes can't distinguish more than 1000 points per 
inch; in appropriate circumstances they can. The reason is that particles of 
ink can't distinguish such fine details—you can't print the edge of an ink line 
that zigzags 1000 times on the diagonal of a square inch, the ink will round 
off the edges. In fact the critical number seems to be more like 500 than 1000. 
Thus the physical properties of ink cause it to appear as if there were no 
raster at all. 

It now seems clear that discrete raster-based printing devices will soon 
make the other machines obsolete for nearly all publishing activity. Thus in 
future days the fact that Gutenberg and others invented movable type will 
not be especially relevant; it will merely be a curious historical fact that 
influenced history for only about 500 years. The ultimately relevant thing will 
be mathematics: the mathematics of matrices of 0's and l's! 

Semiphilosophical remarks. I have to tell the next part of the story from my 
personal point of view. As a combinatorial mathematician, I really identify 
with matrices of 0's and l's, so when I learned last spring about such printing 
machines it was impossible for me to continue what I was doing; I just had to 
take time off to explore the possibilities of the new equipment. My motivation 
was also increased by the degradation of quality I had been observing in 
technical journals; and furthermore the publishers of my books on computer 
programming had tried valiantly but unsuccessfully to produce the second 
edition of volume 2 in the style of the first edition without using the 
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rapidly-disappearing hot lead process. It appeared that my books would soon 
have to look as bad as the journals! When I saw that these problems could all 
be solved by appropriate computer programming, I couldn't resist trying to 
find a solution by myself. 

One of the most important factors in my motivation was the knowledge 
that the problem would be solved once and for all, if I could find a purely 
mathematical way to define the letter shapes and convert them to discrete 
raster patterns. Even though new printing methods are bound to be devised in 
the future, possibly even before I finish volume seven of the books I'm 
writing, any new machines are almost certain to be based on a high precision 
raster; and although the precision of the raster may change, the letter shapes 
can stay the same forever, once they are defined in a machine-independent 
form. My goal was therefore to give a precise description of the shapes of all 
the symbols I would need. 

I looked at the way fonts of type are being digitized at several places in 
different parts of the world; it is basically done by taking existing fonts and 
copying them using sophisticated camera equipment and computer programs, 
together with manual editing. But this seemed instinctively wrong to me, 
partly because the sophisticated equipment wasn't readily available in our 
laboratory at Stanford, and partly because the copying of copyrighted fonts is 
of questionable legality, but mostly because I felt that the whole idea of 
making a copy was not penetrating to the heart of the problem. It reminded 
me of the anecdote I had once heard about slide rules in Japan. According to 
this story, the first slide rule ever brought to the Orient had a black speck of 
dirt on it; so for many years all Japanese slide rules had a useless black spot 
in this same position! The story is probably apocryphal, but the point is that 
we should copy the substance rather than the form. I felt that the right 
question to ask would not be "How should this font of type be copied?" but 
rather: "If the great type designers of the past were alive today, how would 
they design fonts for the new equipment?" I didn't expect to be capable of 
finding the exact answer to this question, of course, but I did feel that it 
would lead me in the right direction, so I began to read about the history of 
type design. 

Well, this is a most fascinating subject, but I can't talk much about it in a 
limited time. Two of the first things I read were autobiographical notes by 
two well-known 20th century type designers, Hermann Zapf [51] and Frederic 
W. Goudy [20], and I was especially interested by some of Zapf's remarks: 

With the beginning of the 'sixties... I was stimulated by this new field 
[photocomposing]... The type-designer—or better, let us start calling him 
the alphabet designer—will have to see his task and his responsibility more 
than before in the coordination of the tradition in the development of 
letterforms with the practical purpose and the needs of the advanced 
equipment of today The new photocomposing systems using cathode-
ray tubes (CRT) or digital storage for the alphabet bring with them some 
absolutely new technical problems, many more than did the past... [51, p. 
71]. 

I have the impression that Goudy would not have been so sympathetic to 
the new-fangled equipment, yet his book also gave helpful ideas. 
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(c) 

FIGURE 4. Sixteenth century ruler-and-compass constructions for the letter B by 

(a) Pacioli [42], (b) Torniello [48], and (c) Palatino [43]. 

(a) (b) 

FIGURE 5. Two more B's, by Tory [49]. 

Mathematical type design. Fortunately the Stanford Library has a wonder­
ful collection of books about printing, and I had the chance to read many 
rather rare source materials. I learned to my surprise that the idea of defining 
letters mathematically is by no means new, it goes back to the fifteenth 
century and it became rather highly developed in the early part of the 
sixteenth. This was the time when there were Renaissance men who combined 
mathematics with the real world, and in particular there was an interest in 
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FIGURE 6. Roman and italic letters designed for Louis XIV of France [24]. 

constructing capital letters with ruler and compass. The first person to do this 
was apparently Felice Feliciano, about 1460, whose handwritten manuscript 
in the Vatican Library was published 500 years later [19]. Feliciano was an 
excellent calligrapher who wanted to put the principles of calligraphy on a 
sound mathematical foundation. Several other fifteen-century authors made 
similar experiments ([8] gives a critical summary of these early developments), 
but the most notable work of this kind appeared in the early sixteenth 
century. 

The Italian mathematician Luca Pacioli, who had previously written the 
most influential book on algebra at the time (one of the first algebra books 
ever published), included an appendix on alphabets in his De Divina Propor­
tioned a book about geometry and the "golden section" which appeared in 
1509. Another notable Italian work on the subject was published by Fran­
cesco Torniello in 1517 [48], [33]; Figure 4 illustrates the letter B as con­
structed by Pacioli, Torniello, and by Giovanbattista Palatino [43]. Palatino 
was one of the best calligraphers of the century, and he did this work about 
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1550. Similar work appeared in Germany and France; the German book was 
probably the most famous and influential, it was Albrecht Dürer's Underwey-
sung der Messung [18], a manual of instruction in geometry for Renaissance 
painters. The French book was also rather popular, it was Champ Fleury by 
Geofroy Tory [49], the first royal printer of France and the man who 
introduced accented letters into French typography. Figure 5 shows Tory's 
two suggestions for the letter B. Of all these books I much prefer Torniello's, 
since he was the only one who stated the constructions clearly and unambigu­
ously. 

Apparently nobody carried this work further to lower case letters, numer­
als, or italic letters and other symbols, until more than 100 years later when 
Joseph Moxon made a detailed study of some beautiful letters designed in 
Holland [38]. The ultimate in refinement of this mathematical approach took 
place shortly afterwards when Louis XIV of France commisioned the creation 
of a Royal Alphabet. A commision of artists and typographers worked on 
Louis's project for more than ten years beginning about 1690, and they made 
elaborate constructions such as those shown in Figure 6 [24]. 

Thus it is clear that the mathematical definition of letter forms has a long 
history. However, I must also report near-universal agreement among today's 
scholars of typography that those efforts were a failure. At worst, the 
ruler-and-compass letters have been called "ugly" and at best they are said to 
be "deprived of calligraphic grace" [8]. The French designs were not really 
followed faithfully by Phillipe Grandjean who actually cut Louis XIV's type, 
nor by anybody else to date, and F. W. Goudy's reaction to this was: "God 
be praised!" [20, p. 139]. Such strictly geometric letter forms were in fact 
criticized already in the sixteenth century by Giovan Cresci, a noted scribe at 
the Vatican Library and the Sistine Chapel. Here is what Cresci wrote in 
1560: 

I have come to the conclusion that if Euclid, the prince of geometry, 
returned to this world of ours, he would never find that the curves of the 
letters could be constructed by means of circles made with compasses. [16] 

Well, Cresci was right. But fortunately there have been a few advances in 
mathematics during the last 400 years, and we now have some other tricks up 
our sleeves besides straight lines and circles. In fact, it is now possible to 
prescribe formulas that match the nuances of the best type designers; and 
perhaps a talented designer working with appropriate mathematical tools will 
be able to produce something even better than we now have. 

Defining good curves. Let's consider the following mathematical problem: 
Given n points zl9 z2,..., zn in the plane, what is the most pleasing closed 
curve that goes through them in the specified order zX9 z29... 9zn and then 
returns to z{t To avoid degenerate situations we may assume that n is at least 
4. This problem is essentially like the dot-to-dot puzzles that we give to young 
children. 

Of course it is not a well-posed mathematical problem, since I didn't say 
what it means for a curve to be "most pleasing". Let's first postulate some 
axioms that the most pleasing curve should satisfy. 
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PROPERTY 1 (INVARIANCE). If the given points are rotated, translated, or 
expanded, the most pleasing curve will be rotated, translated, or expanded in 
the same way. [In symbols: MPC(az{ + b, . . . , azn + b) = 
aMPC(zl9 . . . ,zw) + b.] 

PROPERTY 2 (SYMMETRY). Cyclic permutation of the given points does not 
change the solution. [MPC(zl9 z 2 , . . . , zn) = MPC(z2,..., zn9 z{).] 

PROPERTY 3 (EXTENSIONALITY). Adding a new point that is already on the 
most pleasing curve does not change the solution. [If z is between zk and zk+l 

on MPC(zl9 . . . , zn) then MPC(zl9 . . . , zk, z, zk+l9 . . . , zn) = 
MPC(zl9...9zk9zk+l9...9zn).] 

These properties are rather easy to justify on intuitive grounds. For example, 
the extensionality property says that additional information won't lead to a 
poorer solution. 

The next property is not so immediately apparent, but I believe it is 
important for the application I have in mind. 

PROPERTY 4 (LOCALITY). Each segment of the most pleasing curve between 
two of the given points depends only on those points and the ones im­
mediately preceding and following. [MPC(z{9 z 2 , . . . , zn) is composed of 
MPC(zn9 Zj, z2, z3) from zx to z2, then MPC(zl9 z2, z3, z4) from z2 to 
z 3 , . . . , then MPC(zn_l9 zn9 z„ z2) from zn to zv] 

According to the locality property, changes to one part of a pattern won't 
affect the other parts. This simplifies our search for the most pleasing curve, 
because we need only solve the problem in the case of four given points; and 
experience shows that it is also a great simplification when letters are being 
designed, since individual portions of strokes can be dealt with separately. 
Incidentally, Property 4 implies Property 2 (cyclic symmetry). 

One way to satisfy all four of these properties is simply to let the most 
pleasing curve consist of straight line segments. But this doesn't seem ade­
quately pleasing, so we postulate 

PROPERTY 5 (SMOOTHNESS). There are no sharp corners in the most pleasing 
curve. [MPC(zl9..., zn) is differentiable, under some parameterization.] 

In other words, there is a unique tangent at every point of the curve. 
The extensionality, locality, and smoothness properties taken together 

imply, in fact, that the direction of the tangent at zk depends only on zk_l9 zk 

and zk + l. For this tangent appears in two curves, the one from zk_x to zk and 
the one from zk to zk+{9 hence we know that it depends only on 
(z*-2> zk-\> zk> zk+\) a n d that it depends only on {zk_X9 zk9 zk+l9 zk+2). By the 
extensionality property, we can assume that n is at least 5, so zk_2 is different 
from z^+2 and the tangent must be independent of them both. We have 
actually used only a very weak form of extensionality in this argument. 

If we apply the full strength of the extensionality postulate, we obtain a 
much stronger consequence, which is quite unfortunate: There is no good way 
to satisfy Properties 1-5! For example, suppose we add one more axiom, 
which is almost necessary in any reasonable definition of pleasing curves: 
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PROPERTY 6 (ROUNDNESS). If z„ z2, z3, z4 are consecutive points of a circle, 
the most pleasing curve through them is that circle. 

This property together with our previous observation about the tangent 
depending only on three points completely determines the tangent at each of 
our given points; namely, the tangent at zk is the tangent to the circle which 
passes through zk„x, zk, and zk+x. (Let's ignore for the moment the possibility 
that these three points lie on a straight line.) Now the extensionality property 
says that if z is any point between z, and z2 on the most pleasing curve for 
Z j , . . . , z„, we know the tangent direction at z, as long as z is not on the line 
from z, to z2. But there is a unique curve starting at any z off this line and 
having the specified tangents at each of its points, namely the arc of the circle 
from z to z2 passing through z,: No matter where you start, off the straight 
line, there is only one curve having the correct tangents. It follows that the 
tangent at z2 depends only on zl9 z2, and the tangent at zX9 and this is 
impossible. 

The above argument proves that there is no way to satisfy Properties 3, 4, 
5, and 6. A similar argument would show the impossibility for any reasonable 
replacement for Property 6, since the tangents determined for all z between zx 

and z2 will define a vector field in which there are unique curves through 
essentially all of the points z, yet a two-parameter family of curves is required 
between zx and z2 in order to allow sufficient flexibility in the derivatives 
there. 

So we have to give up one of these properties. The locality property is the 
most suspicious one, but I mentioned before that I didn't want to give it up; 
therefore the extensionality property has to go. This means that if we take the 
most pleasing curve through z 1 ? . . . , zn and if we specify a further point z 
actually on this curve between zk__x and zk, where the tangent at z is not the 
same as the tangent to the circle from zk_x to z to zk, then the "most 
pleasing" curve through these n + 1 points will be different. A possible virtue 
is that we are encouraged not to specify too many points; a possible 
drawback is that we may not be able to get the curves we want. 

A practical approximation. Returning to the question of type design, our 
goal is to specify a few points zk and to have a mathematical formula that 
defines a pleasant curve through these points; such curves will be used to 
define the shape of the character we are designing. Ideally it should also be 
easy to compute the curves. I decided to use cubic equations 

z(0 = «o + <M + ait2 + a3*3 

where a0, a„ a2, a3 are complex numbers and / is a real parameter. The 
curves I am dealing with are cubic splines, namely piecewise cubic equations, 
since a different cubic will be used in each interval between two of the given 
points; however, the way I am determining the coefficients of these two 
cubics is different from any of the methods known to me, in my limited 
experience with the vast literature about splines. Perhaps my way to choose 
the coefficients is more awkward than the usual ones; but I have obtained 
good results with it, so I'm not ashamed to reveal the curious way I 
proceeded. 
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In the first place, I decided that the cubic equation between zx and z2 

should be determined completely by zx and z2 and the directions of the 
tangents at zx and z2. We have already seen that these tangents are essentially 
predetermined if Properties 4, 5, and 6 are to be valid, and I have also found 
frequent occasion in type design when it was desirable to specify that a 
certain tangent was to be made horizontal or vertical. Thus, my method of 
computing a nice curve through a given sequence of points is first to compute 
the tangent directions at each point, then to compute the cubics in each 
interval based solely on the endpoints of that interval and on the desired 
tangents there. By rotation and translation and scaling, according to Property 
1, we can assume that the problem is to go in the complex plane from 0 to 1, 
with given directions at the endpoints. The most general cubic equation which 
does this is 

z(t) = 3/2 - 2t3 + re»t(l - tf~ se'ln2{\ - /), 

and it remains to determine positive numbers r and s as appropriate functions 
of 0 and <p. 

In the second place, I realized that it was impossible to satisfy Property 6 
with cubic splines, because you can't draw a circle as a cubic function of t. 
But I wanted to be able to get curves that were as near to being circles as 
possible, whenever four consecutive data points lay on a circle; the curves 
should preferably be indistinguishable from circles as far as the human eye is 
concerned. Therefore when 0 = <p I decided to choose r = s in such a way 
that z{\) was precisely on the relevant circle, hoping that the curve between 0 
and \ and between \ and 1 wouldn't veer too far away. Well, this turned out 
to work extremely well: A little calculation, done with the help of a com­
puter,4 showed that the maximum deviation from a true circle occurs at the 
point t = (3 ± V I )/6, and the relative error is negligibly small. For exam­
ple, if we take four points equally spaced at distance 1 from some center, the 
spline curve defined by these points in the above manner stays between 
distance 1 and distance 71/54 - 2V2/9 < 1.00055 from the center, an error 
of less than one part in a thousand. If there are 8 points, the maximum error 
is less than four parts per million; and if there are n points, the maximum 
error goes to zero as l/n6. 

(Changing the notation slightly, let 

z{t) - 1 + {e* - 1)(3/2 - 2t3) 

+ 4/7(1 - 0(1 - * ~ **')(sin \ ) / (l + cos | ) 

and f(i) - |z(0|2. Then 

ƒ'(/) = 8(sin2 | ) 
cos -z — 1 

COS -r + 1 
(t - l)t(2t - 1)(6/2 - 6/ + 1) 

4 Thanks are due to the developers of the computer algebra system called MACSYMA at MIT, 
and to the ARPA network which makes this system available for research work. 
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and 

max \z 
w'4(̂ )1= 1 + e( e 10 

55296 106168320 

while mino</<1 |z(0| = *(0) = z{\) = z(l) = 1. The "two-point circle" has 

max |z (0 | = V 2 8 / 2 7 = 1.01835, while the three-point circle has 
max|z(0| = V325/324 = 1.001542, and the eight-point cicle has max|z(/)| = 
1.0000042455.) 

FIGURE 7. 
Spline curves with 
0 - 0° (5°) 120° and <J> = 60° 

FIGURE 8. 
Same as Figure 7 
but adjusted so that 
r' = max(|, r), s' = max(|, s). 

Another case when a natural way to choose r and s suggests itself is when 
9 + <p = 90°; then the curve z(t) should be nearly the same as an ellipse 
having the endpoints on its axes. (This boils down to requiring that (3/2 - 2/3 

- 0/cos <p)t2(l - 0 - l)2 + (3/2 - 2/3 + (r/cos 9)t{\ - /)2)2 be approxi­
mately equal to 1.) So far therefore I knew that I wanted 

r = 

r = 

i + cos e ' 
4 cos 9 

s = 

s = 

1 + cos <p 
4 cos <p 

whenô = <p; 

(1 + cos 45°)(cos 45°) ' (1 + cos 45°)(cos 45°) 

So I tried the formulas 
4 cos 9 

9 + <p' 
2 

1 + cos 1 ^ jfcos —r—£ J I 
5 = 

when 0 + (p = 90° 

4 cos <p 

which fit both cases. However, this didn't give satisfactory results, especially 
when 9 + <p approached 180°. My second attempt was 

r = 
! ( « • cos 

4 sin<p 

-y-jsm 0 + <p 
2 

4sin0 
/ , . 0 + <p\ • 9 + 9 

and this has worked very well. Figure 7 shows the spline curves that result 
from the above approach when <p = 60° and when 9 varies from 0° to 120° in 
5° steps. 
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It can be proved that if 0 and <p are nonnegative and less than 180°, the 
cubic curve z(t) I have defined will never cross the straight lines at angles 0 
and <p that meet the endpoints 0 and 1 respectively. This is a valuable 
property in type design, since it can be used to guarantee that the curve won't 
get out of bounds. However, I found that it also led to unsatisfactory curves 
when one of 0 or <p was very small and the other was not, since this meant 
that the curve z(t) would be very close to a straight line yet it would enter 
that line from outside at a rather sharp angle. In fact, the angle 0 is not 
infrequently zero, and this forces a straight line and a sharp corner at the 
right endpoint. Therefore I changed the formulas by making sure that both r 
and s are always \ or greater unless special exceptions are made; furthermore 
I never let r or s exceed 4. Figure 8 shows the spline curves obtained under 
the same conditions as Figure 7, but with s set to \ if the above formula calls 
for any smaller value. 

Using these techniques we obtain a system for drawing reasonably nice 
curves, if not the most pleasing ones, and it is especially good at circles. If the 
method gives the wrong tangent direction at some point, you can control this 
by specifying two points very close together having the desired slope. I have 
also included another way to modify the standard tangent directions, in­
tended to make the system as good at drawing ellipses as it is at drawing 
circles: Before computing the splines I first shrink the entire figure in the 
vertical direction by multiplying all the y coordinates by a given aspect ratio 
(normally 1); then the splines are calculated, and the resulting shrunken 
curves are stretched out again by dividing the y coordinates by the aspect 
ratio. 

Application to type design. Now let's take a closer look at what can be 
drawn with a mathematical system like this. I suppose the natural thing to 
show you would be the letters A to Z; but since this is a mathematical talk, 
let's consider the digits 0 to 9 instead. (See Figure 9.) Incidentally, the way I 
have arranged these numerals illustrates a fundamental distinction between a 
mathematician and a printer: the mathematician puts 0 next to the 1, but the 
printer always puts it next to the 9. 

0123456789 
FIGURE 9. Digits 0 to 9 drawn by the prototype METAFONT programs. 

(Further refinements to these characters will be made before the font has its final form. ) 
Most of these digits are drawn by using another idea taken from the history 

of typography, namely to imitate the calligrapher who uses pen and ink. 
Consider first the numeral '3', for example. The computer program which 
drew this symbol in Figure 9 can be paraphrased as follows. "First draw a dot 
whose left boundary is \ of the way from the left edge to the right edge of the 
type and whose bottom boundary is f of the way from the top to the bottom 
of the desired final shape. Then take a hairline pen and, starting at the left of 
the dot, draw the upward arc of an ellipse; after reaching the top, the pen 
begins to grow in width, and it proceeds downward in another ellipse in such 
a way that the maximum width occurs on the axis of the ellipse, with the right 
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0 A B C D E F G H I J K L M N 

OPQRSTUVWXYZH 

'abcdefghijklmno 

pqrstuvwxyzfffïflffiffl aelikoe/ELfAŒ 

0123456789 : ;<=>? * ""*~° 

!wçç%&'()*+»--/ rAeAsnznronij 
FIGURE 10. A font of 128 characters defined by METAFONT with 

standard pen settings. (The accent characters will be 
appropriately raised and centered over other letters 
when used by TEX.) 

edge of the pen § of the way from the left edge to the right edge of the type. 
Then the pen width begins to decrease to its original size again as the pen 
traverses another ellipse taking it down to a position 48% of the way from the 
top to the bottom of the desired final shape . . . . " 

Notice that instead of describing the boundary of the character, as the 
renaissance geometers did, my METAFONT system describes the curve 
traveled by the center of the pen, and the shape of this pen is allowed to vary 
as the pen moves. The main advantage of this approach is that the same 
definition readily yields a family of infinitely many related fonts of type, each 
font being internally consistent. The change in pen size is governed by cubic 
splines in a manner analogous to the motion of the pen's center. In order to 
define the 20 or so different type fonts used in various places in my books, I 
need for the most part to use only three kinds of pens, namely (i) a circular 
pen, used for example to draw dots and at the base of the numeral '7'; (ii) a 
horizontal pen, whose shape is an ellipse, the width being variable but the 
height being constantly equal to the height of a hairline pen—such a pen is 
used most of the time, and in particular to draw all of the numeral '3' except 
for the dots; (iii) a vertical pen, analogous to the horizontal one, used for 
example to draw the strokes at the bottom of the '2' and at the top of the '5' 
and the '7'. For the fonts I am using, it was not necessary to use an oblique 
pen (i.e., an ellipse that is tilted on its side) except to make the tilde accent for 
Spanish AZ'S; but to produce fonts of type analogous to Times Roman, an 
oblique pen would of course be used. If this system were to be extended to 
Chinese and Japanese characters, I believe it would be best to add another 
degree of freedom to the pen's motion, allowing an elliptical pen shape to 
rotate as well as to change its width. 

The digit '4' shows another aspect of the METAFONT system. Although 
this character is fairly simple, consisting entirely of straight lines, notice that 
the thick line has to be cut off at an angle at the top. In order to do this, there 
are erasers as well as pens. First the computer draws a thick line all the way 
from top to bottom, like the upper case letter 'I', then it takes an eraser which 
erases everything to its left and comes down the diagonal stroke, then it takes 
a hairline pen and finishes the diagonal stroke. Such an eraser is used also at 
the top of the T and the bottom of the '2', etc. 

Sometimes a simple spline seems to be inadequate to describe the proper 
growth of pen width, so in a few cases I had to resort to describing the left 
and right edges of the pen as separate curves, to be filled in afterwards. This 
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(C) (d) 

FIGURE 11. The letter S as defined by (a) Pacioli [42]; (b) Torniello [48]; 
(c) Palatino [43]; (d) French commission under Jaugeon [24]. 

occurs for example in the main stroke of the numeral '2', whose edges are 
defined by two splines having a specified tangent at the bottom and having 
vertical slope at the right of the curve. 

With these techniques I found that it was possible to define a decent-look­
ing complete font, containing a total of 128 characters, in about two months, 
although it will still be necessary of course to do fine tuning when more trial 
pages are typeset. (See Figure 10.) The most difficult symbol by far, at least 
for me, was the letter S (and the numeral 8, which uses the same procedure); 
in fact I spent three days and nights without sleep, trying to make the S look 
right, before I got it. At one point I even felt it would be easier to rewrite all 
my books without using any S"s! After the first day of discouraging trials, I 
showed what I had to my wife, and she said, "Why don't you make it 
S-shaped?" 

Figure 11 shows how this problem was solved by Pacioli, Torniello, 
Palatino, and the French academicians; but the letter doesn't look like a 



362 D. E. KNUTH 

modern S. Furthermore I think the engraver of the French S cheated a little 
in rounding off some lines near the middle—perhaps he used a French curve. 
With my wife's assistance, I finally came up with a satisfactory solution, 
somewhat like those used in the sixteenth century but generalized to ellipses. 
Each boundary of each arc of my S curve is composed of an ellipse and a 
straight line, determined by (i) the locations of the beginning and ending 
points, (ii) the slope of the straight line, and (iii) the desired left extremity of 
the curve. It took me three hours to derive the necessary formulas, and I think 
Newton and Leibnitz would have enjoyed working on this problem. Figure 12 
shows various trial 5"s drawn by this scheme with different slopes; I hope you 
prefer the middle one, since it is the one I am actually using. 

QQQQQQQ uuijuuuij 
FIGURE 12. Different S's obtained by varying the slope in the middle. 

(This shows ^, f, | , 1, 5, §, and 2 times the "correct" slope.) 

Families of fonts. To extend the METAFONT system, one essentially 
writes a computer program for the description of each character, in a special 
language intended for describing pen and eraser strokes. My colleague R. W. 
Gosper has observed that this is the opposite of Sesame Street: Instead of 
"This program was brought to you by the letter S" we have "This letter S 
was brought to you by a program." There are about 20 parameters to the 
program, telling how big a hairline pen is, how wide it should be when 
drawing straight or curved stem lines, and specifying the sizes and propor­
tions of various parts of the letters (the x-height, the heights of ascenders and 
descenders, the set width, the length of serifs, and so forth). By changing 
these parameters, we obtain infinitely many different styles of type, yet all of 
them are related and they seem to blend harmoniously with each other. 

For example, Figure 13 shows some of the possibilities. In Figure 13a we 
have a conventional "modern" font in the tradition of Bodoni and Bell and 
"Scotch Roman". Then Figure 13b shows a corresponding boldface, in which 
the hairlines are slightly larger and the stem lines are substantially wider. By 
making the hairlines and stem lines both the same size, and setting the serif 
length to zero, we obtain a sans-serif font as shown in Figure 13c. All of these 
examples are produced with the same programs defining the letter shapes; 
only the parameters are being varied. Actually the particular font shown in 
Figure 13c will have a different style of g, because the descenders are 
especially short in this font, but I have shown this "g" in order to illustrate 
the parametric variations. Figure 13d shows a boldface sans-serif style in 
which the pen has an oval shape wider than it is tall; I find this style 
especially pleasing, particularly because it came out by accident—I designed 
the programs only so that two or three different fonts would look right, all the 
others are free bonuses, and I had no idea that this one would be so nice. 

With a suitable setting of the parameters, we can even imitate a typewriter 
with its fixed width letters, as shown in Figure 13e. There is also a provision 
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(a) Mathematical Mathematical (b) 
Typography Typography 

(c) Mathematical M a t h e m a t i c a l (d) 
Typography T y p o g r a p h y 

(e) Mathematical Mathematical (0 
Typography Typography 

(g) MATHEMATICAL MATi-icmaticai (h) 
T Y P O G R A P H Y Typography 

Typography 

FIGURE 13. Different styles of type obtained by varying the parameters to 
METAFONT: 
(a) Computer modern roman; (b) Computer modern bold; 
(c) Computer modern san serif; (d) Computer modern sans serif 
bold; 
(e) Computer modern typewriter; (f) Computer modern 
slanted roman; 
(g) Computer modern roman with small caps; (h) Computer 
modern roman with small caps and "small lower case"; 
(i) Computer modern funny. 

to slant the letters as in Figure 13f; here the pen position is varied, but the 
actual shape of the pen is not being slanted, so circles remain circles. 

Another setting of the parameters leads to caps and small caps as shown in 
Figure 13g; small caps are drawn with the pens and heights ordinarily used 
for lower case letters, but controlled by the programs for upper case letters. 
Figure 13h shows something printers have never seen before: this is what 
happens when you draw lower case letters in the small caps style, and we 
might call it "small lower case". It actually turns out to be one of the most 
pleasing fonts of all, except that the dots are too large. 

Finally, Figure 13i illustrates the variations you can get by giving weirder 
settings to the parameters. 

When I was an assistant professor at Caltech, the math department 
secretaries used to send occasional "crank" visitors to my office, and I recall 
one time when a man came to ask if anybody had calculated the value of m 
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"out to the end" yet. I tried to explain to him that m had been proved 
irrational, but this didn't seem to sink in, so finally I showed him a table of TT 
to 100,000 decimals and told him that the expansion hadn't ended yet. I wish 
I could have had my typographical system ready at that time, so that I could 
have shown him Figure 14! 

2653 5 8 9 7 ö . . « . w 

FIGURE 14. Variation in height, width, and pen size. 

Figure 14 illustrates another principle of type design, namely that different 
sizes of type in the same style are not simply obtained from each other by 
optical transformations. The heights and widths and pen stroke sizes change 
at different rates, and a good typographer will design each size of type 
individually. I'm not claiming that Figure 14 shows the best way for the 
proportions to vary; it will take further experimentation before I have a good 
idea of what is desirable. The point I wish to make is that the alteration of 
type sizes for subscripts and so on is not as simple as it might seem at first, 
but a system like METAFONT will be able to vary the parameters quite 
readily, and visual experiments on different parameter settings can be carried 
out quickly. It used to take months for a type designer to make his drawings 
and have them converted to metal molds before he could see any proofs. One 
of the results was that there simply wasn't time to give proper attention to all 
the mathematical symbols and Greek letters, etc., as well as to the more 
common symbols, so a printer of mathematics had to make do with a 
hodge-podge of available characters in different sizes. (For example, he was 
often obliged to use different styles of letters in subscript positions, as we 
have seen.) Under the approach I am recommending, we automatically get 
consistency of all the symbols whenever the parameters change. 

FIGURE 15. Lettering equivalent to this raster pattern appears in a Norwegian 
tapestry from Gildeskaal old church, woven about 1500 [22, p. 116]. 

From continuous to discrete. The METAFONT system must not only 
define the characters in the continuum on the plane, it must also express them 
in terms of a discrete raster. Such squaring off of letters on graph paper has a 
long history, going back far before the invention of computers or television; 
for example, we all can remember seeing cross-stitch embroidery samplers 
from the nineteenth century. The same idea on a finer scale has been used in 
tapestries for many centuries: In our own home library, my wife found the 
example of Figure 15 which was woven in the northern part of Norway about 

3 
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1500; this shows the name of St. Thomas in a style imitating contemporary 
calligraphy, and I'm sure that examples which antedate the printing press can 
be found elsewhere. 

mathematics 
mathematics 
mathematics 
mathematics 
mathematics 

FIGURE 16. 

Adjusting the letters to 
coarser rasters. 

Figure 16 shows how METAFONT produces the same letters from the 
same parameters but with different degrees of resolution in the raster. This 
digitization process itself is considerably more difficult than it may seem at 
first, and some nontrivial mathematical concepts were needed before I could 
produce satisfactory results. In the first place, it is not sufficient merely to 
draw or to imagine drawing the character with infinite precision and then to 
"round" it by blacking in all the squares on graph paper that are sufficiently 
dark in the true image. One of the reasons this fails is that the three stem lines 
of the m, for instance, might be located in different relative positions with 
respect to the grid, so that the first stroke ,might round to three units wide 
(say) and the second might round to four. This would be quite unsatisfactory, 
as the eye quickly picks up such a variation in thickness, but it is avoided by 
METAFONT since the pen itself is first digitized and then the same digitized 
pen is used for all three strokes. Another problem is that those three strokes 
should be equally spaced; it would look bad if there were seven units between 
the first two and eight units between the last two, so the program for 'm9 

needs to round its points in such a way that this doesn't happen. 
The process of digitizing the pen is not trivial either. Suppose, for example, 

we want a circular pen that is 2 raster units wide; the appropriate pen is 
clearly a 2 X 2 square, which is the closest to a circle that we can come at this 
low degree of resolution. Now notice that we can't center a 2 X 2 square on 
any particular square, since none of the four squares is at its center; the same 
problem arises whenever we have to deal with a pen having even dimensions. 
One way to resolve this would be to insist on working only with odd numbers, 
but this would be far too limiting; so METAFONT uses a special rounding 
rule for the position of the pen's center. In general, suppose the pen is an 
ellipse of integer width w and integer height h; then if the pen is to be 
positioned at the real coordinates (x, y), its actual position on the discrete 
grid is taken to be 

(Lx - ô(w)J, Ly - 8(h)J) 

where LxJ denotes the greatest integer less than or equal to JC, and 
fi(even) = | , 5(odd) = 0. The pen itself, if positioned at the origin, would 
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consist of all integers (x, y) which satisfy 

I a » ^ j»+[$z^wy«,+max( 2 ^ 1 , imy. 
This formula—which incidentally is not the first one I tried—ensures that the 
discrete pen will indeed be w units wide and h units high, when w and h are 
positive integers. Figure 17 shows the pens obtained for small w and h. 

FIGURE 17. 
Discrete "elliptical" pens 
of small integer width and height. 

:>:D 
(a) (b) (c) 

FIGURE 18. 
Difficulties of rounding an arc 
properly. (Three circles of radius 
10 drawn with a 1 X 3 pen.) 

Still another problem appears when we want curved lines to look right. 
Figure 18(a) shows a semicircle of radius 10 units, drawn with a pen of height 
1 and width 3, when the right boundary of the pen falls exactly at an integer 
point; the pen sticks out terribly in one place. On the other hand if this right 
boundary falls just shy of an integer point, we get the curve in Figure 18(b) 
which looks too flat. The ideal occurs in Figure 18(c), when the right 
boundary occurs exactly midway between integers. Therefore the META-
FONT programs adjust the location of curves to the raster before actually 
drawing the curves, forcing the favorable situation of Figure 18(c); the actual 
shape of each letter changes slightly in order to adapt that letter to the desired 
raster size in a pleasant way. 

There is yet another problem, which arises when the pen is growing in such 
a way that the edges of the curve it traces would be monotonie if the pen 
were drawn to infinite precision, yet the independent rounding of pen 
location and pen width causes this monotonicity to disappear. The problem 
arises only rarely, but when it does happen the eye immediately notices it. 
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Pen width Rounded width 
and location and location 
(3.5, 0.5,10.5) (3, 0,10) 
(3.7, 0.8, 9.5) (3, 0, 9) 
(3.9, 1.1, 8.5) (3, 1, 8) 
(4.1, 1.4, 7.5) (4, 0, 7) 
(4.3, 1.7, 6.5) (4, 1, 6) 
(4.5, 2.0, 5.5) (4, 1, 5) 
(4.7, 2.3, 4.5) (4, 1, 4) 
(4.9, 2.6, 3.5) (4, 2, 3) 
(5.1, 2.9, 2.5) (5, 2, 2) 
(5.3, 3.2, 1.5) (5, 3, 1) 
(5.5, 3.5, 0.5) (5, 3, 0) 

FIGURE 19. Failure of monotonicity due to independent rounding. 
(Rounding takes (w, x,y) into (L wJ, Lx - 8(L wJ)J, lyJ).) 

Consider, for example, the completely linear situation in Figure 19, where 
each decrease by one unit in.y is accompanied by an increase of .3 units in x 
and an increase of .2 units in the pen width w; the intended pen height is 
constant and very small, but in the discrete case the pen height is taken to be 
1. The lightly shaded portion of Figure 19 shows the true shape intended, but 
the darker squares show that the digitized form yields a nonmonotonic left 
boundary. METAFONT compensates for this Sort of problem by keeping 
track of the desired boundaries when the pen width is varying, plotting points 
twice (e.g. plotting both (x,y) and (x — 1,>0) when necessary to keep the 
boundary correct. In other words, the idea of rounding the pen location and 
the width independently is sometimes effectively abandoned. 

The final digitization problem that I needed to resolve was to make the left 
half of an "0" look like the mirror image of its right half, to make a left 
parenthesis look like the mirror image of a right parenthesis, and so on. This 
was done by having the METAFONT programs in such cases choose a center 
point that was either exactly at an integer or an integer plus \, and to 
introduce dual rounding which could be proved to produce exactly the 
correct symmetry properties. 

Alternative approaches. As I have said, I believe the METAFONT system is 
successful as a way to define letters and other symbols, but probably even 
better procedures can be divised with further research. Some of the limita­
tions of my cubic splines are indicated in Figure 20. Part (a) of that 
illustration shows a five-pointed star and the word "mathematics" in an 
approximation to my own handwriting, done with straight line segments so 
that you can see exactly what the data points are that I fed to my spline 
routine. Part (b) shows the way my handwriting might look when I get older; 
it was obtained by simply setting r = s = 2 in all the spline segments, 
therefore making clear what tangent angles are prescribed by the system. Part 
(c) is somewhat more disciplined, it was obtained by putting r = s = \ 
everywhere. Figure 20(d) is like Figure 20(c) but drawn with a combined 
pen-and-eraser. Such a combination can lead to interesting effects, and the 
star here is my belated contribution to America's bicentennial. 

When the general formulas for cubic splines are used as I explained above, 
we get Figure 20(e) in which the star has become a very good approximation 
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(a) 

(b) 

(c) 

(d) 

(e) 

yn^AM^r?uz^(k 

y>w/Aj^a<M<jC4...' 

FIGURE 20. 
Examples of the cubic splines 
applied to sloppy handwriting. 

to a circle (as I said it would). In this illustration the pen is thicker and has a 
slightly oblique stress. Although my handwriting is inherently unbeautiful, 
there are still some kinks in Figure 20(e) that could probably be ironed out if 
a different approach were taken. 

The most interesting alternative from a mathematical standpoint seems to 
be to find a curve of given length that minimizes the integral of the square of 
the curvature with respect to arc length. This integral is proportional to the 
strain energy in a mechanical spline (in other words, a thin slat or beam) of 
the given length, going through the given points, so it seems to be an 
appropriate quantity to minimize. E. H. Lee and G. E. Forsythe [31] have 
reviewed early work on this variational problem, and shown that it is 
equivalent to having the spline at equilibrium with forces applied only at the 
given points of support. The Norwegian mathematician Even Mehlum [36] 
has shown that if we specify a fixed arc length between consecutive points, 
the optimum curve will have linearly changing curvature of the form ax + by 
+ c at point (x,y\ and he has suggested choosing the constants by taking 
b/a = (y2 - y\)/(x2 — xx) between (xl9yx) and (x2,y2% and requiring that 
slope and curvature be continuous across endpoints. Such an approach seems 
to require considerably more computation than the cubic splines recom­
mended here, but it may lead to better curves, e.g. satisfying the extensional-
ity property. 

Another interesting approach to curve-drawing, which may be especially 
useful for simulating handwriting, is a "filtering" method suggested to me 
recently by Michael S. Paterson of the University of Warwick (unpublished). 
To get a smooth curve passing through points zk, assuming that these points 
are about equally spaced on the desired curve, one simply writes 

*(<) - 2 (-!)**/(* - *) / 2 (- i)V« - *) 
where ƒ(/) is an odd function of order t' 
from zero; e.g., 

as / -» 0, decreasing rapidly away 

ƒ(*) = csch / = 2 / ( e ' - <T')• 
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I have not had time yet to experiment with Paterson's method or to attempt 
to harness it for the drawing of letters. It is easy to see that the derivative 
*'(**) = /0)0*+i - **-i) - /(2)(**+2 - **-2> + ' • • l i e s approximately in 
the direction of zk+l — zk_v 

mathematics 
mathematics 
mathematics 
mathematics 
mathematics 
mathematics 
mathematics 
mathematics 
math emat \cs 
mat\ie;nat\cp 
mathematici F*™21. 
niatJiein&ti es SSSSt.T. 

Randomization. In conclusion, I'd like to report on a little experiment that I 
did with random numbers. One might complain that the letters I have 
designed are too perfect, too much like a computer, so they lack "character." 
In order to counteract this, we can build a certain amount of randomness into 
the choices of where to put the pen when drawing each letter, and Figure 21 
shows what happens. The coordinates of key pen positions were chosen 
independently with a normal distribution and with increasing standard 
deviation, so that the third example has twice as much standard deviation as 
the second, the fourth has three times as much, and so on. Note that the two 
m's on each line (except the first) are different, and so are the a's and the t% 
since each letter is randomly drawn. 

mathematics 
mathematics 
mathematics 

mûthamutlos 

FIGURE 22. 
A bit of randomness introduced 
into various styles of type. 

After the deviation gets sufficiently large the results become somewhat 
ludicrous; and I don't want people to say that I ended this lecture by making 
a travesty of mathematics. So let us conclude by looking at Figure 22, which 
shows what is obtained in various fonts when the degree of randomness is 
somewhat controlled. I think it can be said that the letters in this final 
example have a warmth and charm which makes it hard to believe that they 
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were really generated by a computer following strict mathematical rules. 
Perhaps the reason that the printing of mathematics looked so nice in the 
good old days was that the fonts of type were imperfect and inconsistent. 

Summary. I'd like to summarize now by pointing out the moral of this long 
story. My experiences during the last few months vividly illustrate the fact 
that there are plenty of good mathematical problems still waiting to be 
solved, almost everywhere you look—especially in areas of life where 
mathematics has rarely been applied before. Mathematicians can provide 
solutions to these problems, receiving a double payoff—namely the pleasure 
of working out the mathematics, together with the appreciation of the people 
who can use the solutions. So let's go forth and apply mathematics in new 
ways. 
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